莱布尼茨公式

莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则

莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。

一般的,如果函数=(x)与函数v=v(x)在点x处都具有n阶导数,那么此时有

莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。

微积分的创立者是牛顿和莱布尼茨,之所以说牛顿和莱布尼茨的创立者,事实上是因为他们把定积分与不定积分联系起来,从而建立了微分和积分相互联系的桥梁。

牛顿莱布尼茨公式,经常也被称为“微积分学基本定理”。

莱布尼茨公式通俗理解

这个公式完全与二项式展开类似的,如果知道二项式展开公式的话,这个就很容易记住了。这个公式也可以这样记忆:把(tv)按二项式定理展开。

(atb)n=C(n,0)bn+C(n,1)ab^(n-1)+...+C(n,n-1)a^(n-1)b+C(n,n)a^n

然后把所有的次方换成求导,就是(v)的n阶导数公式。

(v)^(n)=C(n,0)v~(n)+C(n,1)v(n-1)+...+C(n,n-1)(n-1)v+C(n,n)R(n)v

不过注意,靠前项和最后—项要补上不求导的函数。

符号含义

C(n,k)--------组合符号,即n取k的组合;

^(n-k)-------的n-k阶导数;

v^(k)----------v的k阶导数。

营销型网站