0是不是实数
是
实数,是有理数和无理数的总称,包括0。实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。但仅仅以枚举的方式不能描述实数的全体。实数和虚数共同构成复数。
什么是实数
实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
实数可以分为有理数和无理数两类,或代数数和超越数两类,实数集通常用黑正体字母R表示,实数是不可数的。
实数和虚数共同构成复数,实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性。
数学思维训练
转化型
这是解决问题遇到障碍,受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。在教学中,通过该项训练,可以大幅度地提高学生解题能力。
系统型
这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。
激化型
这是一种跳跃性、活泼性、转移性很强的思维形式。教师可通过速问速答来训练练学生。
如问:3个5相加是多少?学生答:5+5+5=15或5×3=15。教师又问:3个5相乘是多少?学生答:5×5×5=125。紧接着问:3与5相乘是多少?学生答:3×5=15,或5×3=15。通过这样的速问速答的训练,发现学生思维越来越活跃,越来越灵活,越来越准确。
类比型
这是一种对并列事物相似性的同实质进行识别的思维形式。这项训练可以培养学生思维的准确性。如:
①金湖粮店运来大米6吨。比运来的面粉少1/4吨、运来面粉多少吨?
②金湖粮店运来大米6吨,比运来的面粉少1/4,运来面粉多少吨?
以上两题,虽然相似,实质不同,一字之差,解法全异,可以点拨学生自己辨析。通过训练,学生今后碰到类似的问题便会仔细推敲,这样就大大地提高了解题的准确性。