正弦定理和余弦定理分别是什么意思

正弦定理是三角学中的一个基本定理,它指出在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径;余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题

正弦定理是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA=b/sinB=c/sinC=2r=D(r为外接圆半径,D为直径)。

余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

正弦定理公式及其推论

正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。

正弦定理公式、余弦定理公式

正弦定理公式

a/sinA=b/sinB=c/sinC=2R。

【注1】其中“R”为三角形△ABC外接圆半径。下同。

【注2】正弦定理适用于所有三角形。初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。

正弦定理推**式

1、(1)a=2RsinA;

(2)b=2RsinB;

(3)c=2RsinC。

2、(1)a:b=sinA:sinB;

(2)a:c=sinA:sinC;

(3)b:c=sinB:sinC;

(4)a:b:c=sinA:sinB:sinC。

【注】多用于“边”、“角”间的互化。

三角板的边角关系也满足正、余弦定理

3、由“a/sinA=b/sinB=c/sinC=2R”可得:

(1)(a+b)/(sinA+sinB)=2R;

(2)(a+c)/(sinA+sinC)=2R;

(3)(b+c)/(sinB+sinC)=2R;

(4)(a+b+c)/(sinA+sinB+sinC)=2R。

正弦定理推**式

4、三角形ABC中,常用到的几个等价不等式。

(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。

(2)“a+b>c”等价于“sinA+sinB>sinC”。

(3)“a+c>b”等价于“sinA+sinC>sinB”。

(4)“b+c>a”等价于“sinB+sinC>sinA”。

5、三角形△ABC的面积S=(abc)/4R。其中“R”为三角形△ABC的外接圆半径。

余弦定理公式及其推论

余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

余弦定理公式

(1)a^2=b^2+c^2-2bccosA;

(2)b^2=a^2+c^2-2accosB;

(3)c^2=a^2+b^2-2abcosC。

【注】余弦定理及其推论适用于所有三角形。初中数学,三角形内角的余弦值等于“邻比斜”仅适用于直角三角形。

余弦定理公式及其推**式

余弦定理推**式

1、cosA=(b^2+c^2-a^2)/2bc;

2、cosB=(a^2+c^2-b^2)/2ac;

3、cosC=(a^2+b^2-c^2)/2ab。

三角形的正弦定理和余弦定理公式及其推论常用来解三角形。对于某些复杂题,需要把正弦定理和余弦定理及其推论综合起来运用。

【例题】已知三角形△ABC中,角A=30°,a=2,求三角形△ABC外接圆的面积。

解:设三角形ABC外接圆半径为R,

根据正弦定理得:a/sinA=2R,

所以R=a/(2sinA)=2,

所以,三角形ABC的外接圆面积S=4π。

营销型网站