两点式方程公式
y=a(x-x1)(x-x2)
两点式方程公式是y=a(x-x1)(x-x2)。其中x1,x2是方程y=ax2+bx+c(a≠0)的两根。
两点式又叫两根式,两点式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠
知道抛物线的与x轴的两个交点(x1,0),(x2,0),并知道抛物线过某一个点(m,n),设抛物线的方程为y=a(x-x1)(x-x2),然后将点(m,n)代入去求得二次项系数a。
二次函数一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a
当a>0,与b异号时(即ab0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a0,b
事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
点斜式已知直线l的斜率是k,并且经过点P1(x1,y1)直线方程是y-y1=k(x-x1)
但要注意两个特例
a当直线的斜率为0°时直线的方程是y=y1
b当直线的斜率为90°时,直线的斜率不存在,直线方程是x=x1。
两点式
已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2)
直线方程是(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
斜截式
已知直线l在y轴上的截距为b,斜率为b,
直线方程为y=kx+b。
补充
二次函数一次项系数b和二次项系数a共同决定对称轴的位置。当a>0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a,当a>0,与b异号时(即ab0,所以b/2a要小于0,所以a、b要异号,可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a0,b事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。