综合百科
求矩阵特征值的方法
求矩阵特征值的方法是把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系。
矩阵特征值是设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是矩阵A的一个特征值(characteristicvale)或本征值(eigenvale)。n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根)。若λ是可逆阵A的`一个特征根,x为对应的特征向量,则1/λ是A的逆的一个特征根,x仍为对应的特征向量。若λ是方阵A的一个特征根,x为对应的特征向量,则λ的m次方是A的m次方的一个特征根,x仍为对应的特征向量。设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量(i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。